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Absiract. The interplay of a direct ferromagnetic exchange interaction [ > 0 between
local and band states and an indirect antiferromagnetic exchange —J < 0 via hybridiza-
tion V' is studied using an expanded version of the Anderson impurity model in the
highly correlated regime. A simple scaling idea is put forward for the dependence of the
free energy, one-particle spectra, T-matrix and susceptibility on the size of hybridization
and direct exchange. It describes the many-body regime J 3 [ in terms of a universal
picture as well as the crossover near J = [ to the trivial regime J < I, the latter
being characterized by an effective elastic one-particle scattering problem. These phys-
ical arguments are supported by extensive pumerical calculations in the framework of
perturbation theory with respect to [ and V', It is also indicated how [ may be included
into pew post-NCA theories of the Kondo effect,

1. Introduction

Recently, Keller and co-workers [1] have proposed extending existing many-body the-
ories for the Anderson model in order to incorporate additional Coulomb-matrix ele-
ments. Indeed, it seems very important to improve on simple effective models, which
neglect most interaction processes and treat others in a mean field fashion only, in
order to make better contact to, e.g., bandstructure calculations. Also, a more gen-
eral applicability to a wider span of materials and specific parameter configurations
is desirable, which would allow for a more consistent description of different correla-
tion phenomena in one theoretical frame. In view of the variety of possible terms in
the Hamiltonian, for, e.g., transition metal compounds, mixing of one-particle states
due to non-orthogonality and different local and non-local Coulomb-matrix elements,
information regarding their particular role in the basic physical picture and possible
allowed simplifications is certainly useful. In their studies of Coulomb interactions
between local and band electrons Keller et o/ have demonstrated the disappearence
of the Kondo effect with increasing direct exchange /. They have also, using dif-
ferent kinds of many-body techniques, ie. the slave-boson approach {1] and direct
perturbation theory [2], put forward questions about the role of residual many-body
correlations of magnetic or charge-transfer type. We will try to shed some light on
this issue by demonstrating for the case of additional exchange interactions a rather
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strict scaling behaviour of thermodynamic and dynamic quantities, in which only one
effective parameter

A= A(1=-1/J) = aNp(V2-I|AE|)

determines the size of physical effects in the whole span between the regimes I < J,
characterized by Kondo effect and corresponding many-body correlations, and I > J,
where only ‘trivial’ one-particle scattering prevails. Here V is a hybridization-matrix
element, M the DOS at the Fermi level e = 0, AE = E,| — E; < 0 the unrenor-
malized energy difference between the relevant ionic levels (assuming infinite ionic
Coulomb repulsion and residual degeneracy n = 2), —J = V?/AFE < 0 the indirect
exchange coupling [3] and A = »V?A} the unrenormalized Anderson width. An
intuitive justification is guided by the physics of the Schrieffer—Wolff transformation
[4], whereas a comparison with full NCA calculations furnishes a quantitative basis of
this picture. We will also indicate how I can be fitted naturally into an advanced post
NCA theory which is currently being developed.
A Hamiltonian for the problem studied here reads

1
H=Y ecfmeim+ > AE X, + ﬁ--Z[Vkamoc,m + HC]
fe.m m k,m

1 .
— 5 2 IR X i Cam 48]
ke, k!

m,m’

where E, = 0, X, are Hubbard’s ionic operators for transferring from state M
to state M', where M = (n, . =) 0 or (n,,. = 1,j, =) m. As a consequence of
an assumed very large electron repulsion, U, in the local orbital the state n; . = 2
is omitted. The processes encountered in direct perturbation theory can be visualized
along a local time axis containing a wavy or broken line for the occupied or empty
local state, vertices in the form of full dots or full squares for the last two terms
in equation (1), i.e. the perturbations V' and I, and straight band electron lines at-
tached to them from the right. The exact transcription into analytical contributions is
intuitive, straightforward and well documented in earlier work [5, 8]. Hybridization
of an electron from the local state into the band will be followed by an immediate
reabsorption of a band electron, possibly with different spin, if the local excitation
energy —A E is much larger than the one-particle level width A acquired by such a
hybridization processes. In this extreme Kondo limit the dynamics is thus effectively
described by pairs of vertices without retardation, i.e. an effective potential scatter-
ing and an indirect exchange term. The latter antiferromagnetic interaction with a
strength J = V2/(z— AE) =~ V?/|AE|(z = 0) causes the Kondo effect and will
be considered here together with the direct ferromagnetic exchange [ > 0. It is thus
to be expected that a total exchange coupling ‘constant’

smm’ _ ymm’ _ Vicm .Vk"m' ~ Im'm' . Vkak'm’ 2)
elaE] |AE] (

kit = g - — AE
will be relevant for the dynamics of the magnetic degrees of freedom. On the' other
hand, the one-particle scattering is also different in the presence of I. It will be
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shown below that in the absence of spin-flip scattering an effective model with a local
T-matrix (1/N )(Vszfg(z) — I) arises in leading order. When the unperturbed
local Green function Gl(gg(z) = 1/(z — AFE) is again taken near the Fermi level, ie.

z &2 0, an effective hybridization intensity or Anderson width results:
A= w(VHNp — wNp((VE) - (DJAE]) = A7 ©)

(the brackets indicate an averaging over quantum numbers m and k) which is relevant
for the one-particle properties near ex. From this discussion we draw the following
conclusions.

(i) The physics of the Hamiltonian (1), in the regime where direct and indirect
exchange couplings are smaller than the valence exitation energy AE, is to a good
approximation equivalent to that of an s—d model with an appropriately rescaled
interaction term. In particular, the two qualitatively different cases of ferro- and
antiferromagnetic interaction fit into this scaling Picture as foilows. (a) In the Kondo
regime of model (1), ie. A < |AE} € Ny’ ~ 2W bandwidth (the Coulomb
repulsion U, being infinite) and J* < 0, the low-temperature state will be ruled by
many-body effects with a new energy scale

. A= \Y" 7| A E]|
kpTg = W (WW) exp [— - ] n = {m. )]

Universal behaviour [6, 27] related to this scale is expected [7]. (b) In the ferro-
magnetic regime of model (1), ie. 0 < A € |AE| € Ny! and I* > 0, spin-flip
processes are essentially frozen out, and only one-particle scattering is left. It may
be attributed to an effective longitudinal exchange coupling [* = I - V?/(z — AE)
which becomes [* = —A*/(xNg|AE|) > 0 for z near ex = 0.

(ii) Possible deviations from this picture have to be attributed to the effect of
charge fluctuations, which spoil the applicability of the Schriefier—Wolff transforma-
tion.

2. Theory

The scaling picture proposed above, which contains only one effective parameter
A", will be tested and verified on the basis of direct perturbation theory [8], which
has proven to be a valuable and essentially correct tool in problems with strong
local electron correlations like the Kondo impurity [9}, the heavy-fermion problem
[10] or the metal-insulator transition as described by the Hubbard model [11]. The
prototypical theory is the non-crossing approximation (NCA) for the Anderson model
in the Kondo regime, which produces as in the x-ray problem [19-21] a proper
threshold behaviour for the ionic resolvents

Par(2) = (MI (27 ) 1M) = [z = Epy = Zpg ()]

where {...). is a partial trace on band states, the exact (Wilson) dynamic energy
scale Ty = Tx(A* — A), see equation (4), and the well known Abrikosov-Suhl (AS)
resonance near the Fermi level. A few years apo it was extended to finite values of the
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local Coulomb repulsion U,,., and again good agreement with physical expectations
and results known from other theories was found [12]. Certain shortcomings for
small n = §m, in particular n = 2, which concern analyticity at the Fermi level and
small deviations from the DOS sum rule [13, 14] can be controlled [15], but have
nevertheless caused a need for improvement, in particular in connection with the (i.e.
Kondo-) lattice problems where the correct Fermi-liquid behaviour is essential, i.e. in
transport calculations.

The most recent state of direct perturbation theory {16] is summarized in the
following graphical representation of contributions to the ionic self-energies X ,,(z):
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These coupled equations, formulated in terms of skeletons in the diagrammatic lan-
guage introduced above, are selfconsistent like the NCA in the sense of Baym [17], but
go considerably further. In the systematics of the 1/n-expansion scheme they consis-
tently contain all skeleton diagrams up to order 1/n?. Furthermore, they incorporate
the direct ferromagnetic exchange [ in a natural way. Each vertex I corresponds
to two orders of the hybridization vertex and is in fact treated jointly according to
equation (2) in the classification of higher skeletons with crossing band electron lines.
This system of integral equations exhibits a very interesting and new threshold be-
haviour [18] and preliminary numerical studies indeed indicate an improvement over
the NCA in the way outlined above. We take this as an additional clue to the ap-
plicability of effective theories for the extended model with two different exchange
mechanisms, but will for the purpose of a detailed comparison restrict ourselves at
present to a kind of effective NCA theory [2]. This much simpler approximation avoids
the numerical efforts connected with threefold integrations over band energies—the
system (5) can at most be written in a way which needs (only) threefold integrations,
compared e.g. to twofold integrations which have been mastered in the NCA-version
at finite U .. Thus the first two diagrams for £,(z) and the first five for £, (2) are
retained here. The corresponding analytical expressions yield the following system to
be evaluated:

Bo(2) = [V?[X(2)/(1 - 1X(2))

F(=e) Polz — &)
B(2) = NZI— fl’(zk—e) I+IV|21—OL1'(2'—’-6€,5)] (10)

X(z)= I_V_ > F(@)Pr(z+e).
km
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For simplicity, also, any dependence of the vertices V' and I on quantum numbers k
and m will be neglected. After these self-energies have been determined by numerical
iteration, the ionic resofvents are known, too, and partition function 2, and the local
Green function (GF) [8]

1 fdz g,
(Xoml Xmald(2) = 5= [ 2 e P Po(sVPu(z + 21
dz _ (11)
Z2ipe = Z /(:2,“3 ’gZ'PM(Z)

M=0,m

can be calculated, which also furnishes the spectral density
Ne(w) = =(1/7) Im{{ Xom] X moh} (w + i6) (12)

of local one-particle excitations. Fermi liquid theory {13, 14] predicts a value some-
what smaller than 1/»A for the Kondo problem at the Fermi level at T = 0, thus
pointing toward scaling with V2 ~ A; see equation (10) in reference {14]. The free
energy Fi.. = —(1/8)In Z,,., the spectrum (12) as well as the local susceptibility

1 d='

b= -8 2 ’
7 |5 ¢ P (GOP(# + ) (13)

x(w) =

are well studied and understood, e.g. for the Kondo problem and will help to check
our scaling hypothesis. (Note that the magnetic susceptibility is quoted in its natural
units (nJ(J + 1)gu2)/3 (19])

A particular role is played by the scattering matrix for band electrons (short: T-
matrix) in so far as it incorporates the action of the local degrees of freedom even
- when they do not appear explicitely as local electrons, e¢.g. in the form of a direct
exchange interaction / only, as in the s-d model for the Kondo probiem. For the
Anderson model on the other hand, given by equation (1) with I = 0, it is easy to
show by, e.g., the equation of motion method that the T-matrix, formally defined by

Cim 1) (2) = G (2) b1 b s + Glom ()T ()G (2) (14)

where Gg’%(z} = (z — €)' is the unperturbed band GF, is simply proportional to
the local GF

TE™ (2) = 6y 1IN Vi o X o) (2) Vit - (15)

It thus contains the same spectral information about the original resonance near A E
and about the As resonance near the Fermi level. By taking the limit AE — —oo
at constant V' the Anderson model can be mapped onto an s—d model with an
antiferromagnetic exchange —.J [4], which is also a special case of equation (1) with
V = 0 and I < 0. The T-matrix should always reflect the many-body effects near
€p in the following way. A very marrow spike remains near ep as representative in
weight of the exponentially small Ty ~ e~ }/(*INF) with peak-heights of (wAp)™?
independent of I' at T = 0, which finally becomes a point of discontinuity when
f = J reaches zero and T = 0. In the present general context the T-matrix

+ 5 ] 1 dz’ - r I |V12’P (Z’)
mm —_ omm e Bz 2! 2
T (s) = o [ e Paet )[I—M*(z')*11—1-1’(z'>12 (o
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is k-independent and can be obtained diagrammatically in NCA by cutting in all skele-
ton contributions to X, (2), see equation (10), the band electron line running into the
uppermost vertex point and removing the oorresPOnding external band GF. For com-
pleteness, we also give the full set of contributions to TfE™ (2) = (8, /N)T%(2)
consistently to order 1/n? including the non-crossing skeletons from equation (5):

T(z) =

a7
Equation (16) completes the list of analytical results in the frame of a generalized
NCA which will be evaluated numerically.
We will also apply the formalism outlined above to the ‘ferromagnetic regime’
I* > 0, where many-body correlations should not be present in the impurity model
{1}. Due to the effective ferromagnetic exchange, spin compensation canhot occur
and spin-flip scattering is suppressed. As for the resonant level model (fm = n = 1)
[9] the NCA can also be expected to furnish a reasonable description of this trivial
case. One expects a mapping of Hamiltonian (1) onto an effective ferromagnetic s—d
model

H=Y el cpm- rz ¥ Z[I"S'“ + 47, (8%t + S'o°sy)] (18)

k,m

where [y = I, = I"(X,,,) > 0,5 and s° are the spin operators of local and
band electrons respectively, and pure_ spin degeneracy fm = n = 2 is assumed for
simplicity. The Iongnudmal term ~ I in (18) now works as an attractive potential
for the equal spin Specues of electrons in the band, which effectively freezes out spin-
flip scattering contained in the transversal terms ~ I,. The problem thus scales to
a trivial fixed point [22] with 7, = 0. It is easy to apply the equation of motion
technique to the original model (1), when contributions violating conservation of the
quantum number m can be neglected. The resulting T-matrix

TR (2) % ~b gl (n-i—nf%Z ! ) (19)
q

Z—fg.
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contains only one energy scale
nl = nl{Xpnm) = [VIn/(z - AE)(Xgo + X)) = I*

ie. again only the universal scale /*. The last approximation nf ~ I* applies near
the stable moment regime (which for I* < 0 would be called Kondo regime), where

0 < (Xyo) € {Xm) = 1/n

and for excitation energies |z| < |AFE|. For small z = w + 1§ and a featureless
pearly symmetric band one obtains

1 -r

Tl (w+10) & 5 ooy

which gives rise t0 a moderate decrease of the DOSs near the impurity at energies
close to the Fermi level ep = O:

No(w) =~ > Tmcumlcum))o + 16)

Nr
—_—, (20
TF (N O
In arriving at the final result, the GF was first inserted in the form (10) with the
energy-independent approximate T-matrix of above and then

1 1 .
ﬁzq:w-%ié'—eq ~ AN

was used. In fact, spin-flip processes can be taken into account quite easily in
this regime [23]. They contribute a term (X, 1}, Which is small and can be
neglected in leading order. These comsiderations show that the AS resonance i not
found in the ferromagnetic case due to the disappearance of many-body correlations;
again only the scaling parameter I* is involved. The new ferromagnetic correlations
should lead only to a weak modification of the bare band Dos. Therefore equations
(19) and (20} do not contain a structure like the small anti-resonance found recently
in a numerical study of the Hamiltionian (1) [2]. A quantitative investigation is
included in the next section.

3. Resulis and discussion

A standard for the following investigation of the scaling behaviour of the model (1)
is set by the check of universality, which is known to hold for the Kondo problem
[24]. Observable properties of the impurity should depend only on relative varjables,
measured in units of the dynamically generated energy scale kgTy, ie. A(T) =
Ao(T/Ty) where Ay is a universal function that is the adjunct to A, the specific
heat, susceptibility or else. A particularly impressive demonstration of universality is
furnished by a dynamical quantity such as the spectral density A°°(w). In figure
1 equation (12) is calculated within NCa for the Anderson impurity at degeneracy
n = 4 [25] ie. equation (1)} with / = 0. Different values of the hybridization
strength V' have been used implying a variation of the indirect exchange coupling
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—-J = V2/AE. The temperature was chosen at T = 0.67y in each case, with Ty
according to equation (4) at A* = A = = ApV? The calculations were made with
a band of width 21 and constant bos N, = 1/2W. The coordinates are scaled
universally as w/kp Ty and w AN Shown is the low-energy region around the
Fermi level. In spite of a sizable variation of A by a factor 1.7 and a corresponding
exponentially strong variation of the Kondo scale Ty up to a factor 25 all five curves
nearly coincide, demonstrating perfect scaling of the AS resonance. The peak value is
near the unitary limit # AN®%(w,,,,) = 1. It should be remarked, however, that this
good approximation to ideal universal behaviour still reveals the presence of (virtual)
charge fAuctuations.

50 4 Ae(e) — § 21
(a)
(&)

20 0 D0 10 20 30 40

wt
TN

Figare 1. (g) Local density of states (DOS) in the vicinity of the Fermi level ¢z = 0
without direct exchange (f = 0) against energy for different hybridization strength
(J* = J = VZ/|AE]), (b) the same data drawn with rescaled axes, Parameters:
n=4, AE = -53, T = 0.6Tg. All energics are given in units of Ap = W/10,
where W is the half band width.

A first test of our scaling hypothesis in the presence of both indirect exchange
—J = V?/AE and direct (ferromagnetic) exchange [ > 0 is summarized in table 1.
An increase of I from zero to 0.4J at constant V' and A E causes a decrease of the
one-particle scale A* from A to 0.6A and a decrease of the effective many-body
scale T from Ty = Tg(J = 0) to 0.04T¢ = T (4 = 0.4J). For larger values
0.4J < I < J the numerical problem of resolving the tiny many-body effects could
not be handled accurately enough. At //J = 0.4 the numerical accuracy is already
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not very good due to slow convergence, which explains the deviations in the last
row of table 1; essentially they are caused by the finite integral mesh. All quantities
were calculated at constant universal temperature T/Ty; = 0.6. The AS resonance
peak ratio, ie. the ratio of the maximum values N'°°(w .. ) at the indicated value
of I and at I = 0, should then simply equal the ratio A/A~ if perfect scaling
would apply, the saturation value being A'%°(w,..) = 1/7A for the Anderson
impurity at zero temperature. The position w,_ ., of the AS resonance peak equals
kg T in the NCA for the Anderson impurity, independent of the degeneracy n. The
corresponding mild violation of the DOS sum rule [13, 14] for n = 2 i3 one of the
shortcomings to be improved on by going beyond the NCA as indicated in section
2. One can nevertheless for small n also compare w, . ({ = 0) to kg T and the
inverse AS resonance position ratio wy, (0)/w_..(I) to T /T for a check of the
scaling hypothesis. Finally, the static susceptibility x,_,(J = 0) at T = 0 of the
Anderson impurity equals 1/(2#xkgTy) [22, 24, 19] which can, together with the
ratio xq(f)/x,(0), be used to this end, too. With Ty, = T (J = 0) = 0.066A,
Wnae{ I = 0) = 0.066A and (x,(0))"! = 0.35A the applicability of the Nca to
Kondo’s infrared problem is once again demonstrated. The reasonable agreement of
the ratios compared in table 1 even for very small values of T}, where numerical
problems begin to arise, already points to the applicability of our scaling arguments.
The deviations of up to 209 will be discussed later.

Table 1.

IfJ  AfA*  sasepeak Ty /T Inverse AR xo0(1)/x0(0)

ratio position ratio
0 1.00 100 1.60 1.00 1.00
0.1 111 121 163 172 1.66
0.2 125 147 1.00 3.28 3.16
0.3 143 178 6.51 7.57 134
0.4 167 2.08 18.2 25.0 21.8

A full justification of the scaling hypothesis comes from the study of the frequency
dependence in spectral density A°°(w), local T-matrix (14) and susceptibility x(w).
We show the corresponding universal functions (see above) for different values of
{ but identical value of T'/Ty in figures 2, 3 and 4. Parts (@) respectively contain
selected raw data, whereas the plots in parts (b) with scaled coordinate axes (as
indicated above) should reveal that these data represent essentially the same universal
curve. It is quite obvious that the simple scaling procedure, i.e, fixing of the universal
temperature parameter T/Ty and gauging the energy axis w — w/{kgT%) and
likewise the ordinate in unijts appropriate for the respective observable

NSy r A* Aloe -ImT,. — —7NpIm T, Imx — kgTy Im x

essentially removes the large deviations between the curves at different values of [
near the Fermi level. Remaining discrepancies are less by an order of magnitude and
again amount up to 20% [7]. Here, too, the curves for 7 = 0.4J have to be treated
with care for reasons mentioned above. The theoretical saturation peak value for the
scaled quantities TA*AN?°¢ —x N Im T, and 2mkgT}: Re x(0) would be one at
T = 0. A discussion of these discrepancies will be taken up below. The approximate,
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0 N (w) — izt
()
w
90 { wAN(w) — =447
w1 N E B
.60 4
A0 A (b)

20 -0 00 L0 26 20 40
W
RT3

Figure 2. () Local density of state in the vicinity of the Fermi level ¢p = 0 against
energy for constant hybridization strength (J = V2 /|AE| = 1.2A,) and increasing
direct exchange I; (&) the same data drawn with rescaled axes. Parameters as in figure [.

but nevertheless clear, applicability of universal functions taken from the Anderson
model (1) with 7 = 0 to the set of dynamical data at values 0 < //J < 1 is taken
as a strong justification for the scaling hypothesis.

Considering the ferromagnetic regime I* > 0, figure 5(a) shows the imaginary
part of the T-matrix over a large energy region at /* = 0.5J and in addition
the corresponding curve calculated from the suggested theoretical scaling behaviour
equation (19) due to one-particle scattering only. Although some deviations are
found, one may conclude that: (i) most features of the NCA and the theoretical T-
matrix approximation agree at least qualitatively, i.e. a broad peak near the original
resonance, & widely smeared out maximum above the Fermi level and some band
edge effects around w = —10; (ii) the absence of pronounced many-body effects at
w = 0. Apparently the band edge effect at the lower edge is more drastic in the NCA
calculation whereas the analytical formula only furnishes a wide tail. We attribute
this feature, as well as the small dip at w = 0, to well known shortcomings of this
approximation [9, 10]. The scaling hypothesis for our model (1) treated in extended
NCA in the ferromagnetic regime is tested in figure 5(b). Apparently, the data for
different values of 7~ between 0.5J and 1.0J can, by simply dividing Im T by I*,
already be mapped onto an universal curve around and above the Fermi level. All
together the agreement seems to be quite reasonable, proving not only the absence
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80 4 —xANFSmT(w)
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50 4
20
30 -
20 F

RLEL

Rei] T T T T
2.0 -1.0 0.0 1.9 2.0 3.0 4.0

BT
Figure 3. (g) Imaginary part of the local T-matrix in the vicinity of the Fermi level
¢p = 0 against energy for constant hybridization strength (J = V2/|AE| = 1.2A,)

and increasing direct exchange I} (f) the same data drawn with rescaled axes. Parameters
as in figure 1.

of many-body correlations as argued before but also the existence of only one scaling
parameter I* which rules the physics of the impurity in this regime in the sense of
equations (19) and (20). The analytical approximation on the other hand can also
not be expected to be quantitatively correct. Spin-flip processes certainly contribute
although no infrared catastrophy is generated here. In order 1o keep these at a
minimum we have chosen n = 2 in figure 3.

As additional evidence for the picture developed we present the local Dos for
the ferromagnetic regime in figure 6. Again qualitative agreement between the NCA
and an analytic approximation [26] consistent with the T-matrix (19) can be stated:
the absence of many-body effects near the Fermi level is obvious. Furthermore figure
7 contains a calculation of the T-matrix of the antiferromagnetic s-d model, ie.
equation (1) at V = 0 and J < 0, and in figure 8 the free energy connected with
the impurity as a function of Ty in the presence of both exchange mechanisms is
plotted. Whereas one can learn from the former about the universal effect of an
antiferromagnetic exchange, direct or indirect, the latter reveals the effective T} as
the universal measure of the spin-compensation energy. The 7T-matrix in figure 7
resembles closely the AS resonance shown in figure 1 although no hybridization is
present here. The band electrons apparently are scattered via the direct interaction
I < 0 as if a fictitious hybridization V* with a fictitious local level AE* < 0
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Figure 4. (2) Imaginary part of the local magnetic susceptibility in natural upits in the
vicinity of the Fermi fevel ¢y = O against energy for constant hybridization strength
(J = V2/|AE|= 1.2A¢) and increasing direct exchange [; (b) the same data drawn
with rescaled axes, Parameters as in figure 1.

were at work, fulfilling I = V*?2/AE* < 0. This picture agrees well with the
philosophy underlying the Schrieffer—Wolff transformation [4]. It should, however, be
stated that the NCA works rather poorly for the s—d model without hybridization in
a quantitative sense. The size of the resonance peneraily comes out too large, ie.
about a factor of 1.5 in figure 7. The enhancement is caused by the denominators
1 — IX(z) in equation (16) which tend to zero near w = 0 for antiferromagnetic
~I = Jat T < Tg. This difficulty is connected with the deviations found above in
the ferromagnetic regime, where I was already larger than the indirect exchange J.
The free energy F,. (figure 8) may be thought of as containing two pieces: (i) the
unperturbed F,, = AE, (strictly one electron present and kg T < |A E|) of the
free ion, and (ii) a part AF' due to the interaction with the band states, which may
at T < T3 in the many-body regime be characterized as spin-compensation energy.
For the pure Kondo problem this last part essentially is again kp Ty, whereas in the
presence of charge fluctuations, ie. V' > 0 and J > 0, an additional contribution due
to scattering of band electrons in the one-particle resonance near AE arises. The
variation of AF = F__ — F;, with a ferromagnetic direct exchange contribution
I at fixed indirect exchange —J in figure 8(a) reveals a negative contribution at
I = 0, which we assign to the spin-compensation plus resonant-scattering energy
of an Anderson impurity and, when T () is chosen for the abscissa, a near-linear
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Figure 6. Local DOS in NCA and analytic approximation for /* = J in the ferromagnetic
regime. Parameters as in figure 5.

decrease with increasing T, This indicates essentially an incrcase in the energy
gained by local spin compensation due to a reduction of /. Note that 7} increases
with decreasing 0 < I < J and vice versa. For antiferromagnetic direct exchange
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I < 0 an analogous effect is found, ie. AF again decreases nearly linearly with
increasing Ty, the latter being now a direct measure of the growing total value —1.
In the ferromagnetic regime the Jeading contribution to A F' is expected to depend
linearly on I*? as can be seen in figure 8(b). This behaviour of the free energy
implies scaling of thermodynamic quantities, such as the static susceptibility which
has been dicussed above, sece e.g. table 1. The connection may be elaborated on
by additional exampies such as the specific heat which underline our point of view.
Therefore scaling, as found for the Hamiltonian (1} with two exchange interaction
mechanisms, encompasses the universality of the Kondo problem, is independent of
the formulation via an Anderson or an $~d model and pertains to thermodynamic
and dynamical quantities.
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Figure 7. Imaginary part of the local T-matrix against energy for ¥V = 0 and anti-
ferromagnetic I; (J = 1.240) at T = T}, Parameters as in figure I,

4. Conclusion

A general agreement of all the results presented with the expectations raised by the
scaling hypothesis formulated in the first section has been found with quantitative
deviations of up to ten per cent, in rare cases somewhat more. Apart from peculiar-
ities connected with specific observables, such as in case of numerical prefactors for
the dynamic energy scale kg7 [24], five general sources of errors can be named:
(i) The Nca itself as an approximation, which e.g. generates a small pathology in
spectra near the Fermi level [9, 27), causing some deviations at small excitations en-
ergies and in particular numerical problems at T « T3, (ii) Stability problems of
numerical procedures for very low Kondo temperature kg Ty < A, where structures
near the Fermi level become very sharp on the natural one-particle scale A of the
problem. (iii) The need for a non-zero temperature T 2 0.67} in all calculations,
at which the theoretically predicted saturation values, ie. w,,, = kgTy: for T =0,
have not yet been reached. (Closed analytical formulas for non-zero temperature
are generally not available.) (iv) The presence of charge fluctuations at non-zero
hybridization which contribute to all observables and for the chosen and convenient
set of parameters typically give up to ten percent corrections to the Schrieffer-Wolff
mapping, even in view of its extended validity [8]. (v) In additional numerical studies
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non-universal features were seen, such as a dependence of the non-exponential part
of the ‘true’ dynamical scale T} on bandstructure. Note that there is a possible
explicit impact of I onto the prefactor of the Kondo temperature (4) as proposed in
[7]. Altogether the deviations observed are of the expected size and can be explained
by these five sources essentially. With regard to the overall picture, a failure of an
effective Schrieffer—Wolff transformation would indicate a more complicated interplay
of hybridization and direct exchange. The contribution (4) also sets the limits of our
scaling picture. Real charge fluctuations, on the other hand, being important in the
intermediate-valence regime [28], reduce the importance of any type of exchange
interaction due to a destabilization of the Jocal moments.

In conclusion, we have shown how the competition of two different exchange
mechanisms in the presence of strong local correlations can be understood via a
simple scaling hypothesis. Evidence presented includes thermodynamic and dynami-
cal observables and encompasses the spin-compensated many-body regime as well as
a ferromagnetic regime, in which the impurity can essentially be described in one-
particle terms. In particular, no signs of additional cosrelation effects were found,
contrary to earlier suggestions [1, 2]. It will, however, certainly be interesting to ex-
tend the present study to the lattice case, where e.g. non-local magnetic correlations,
cooperative magnetism and corresponding phase transitions might be encountered.
The extension beyond NCA, as outlined in section 2, will certainly improve the ac-
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curacy of our results and might be essential for a treatment of the Hamiltonian (1),
properly extended to the lattice. From the point of view of an extended bandstruc-
ture calculation, with particular routines implemented to handie strong correlations
as might be necessary for certain transition metal compounds [29], the present study
could be very useful. It demonstrates that certain Coulomb-matrix elements may
well be taken into account via a few effective parameters. We plan to extend this
investigation to other types of matrix elements such as the Falicov-Kimball term.
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